The department “OPTOSPINTRONICS” has been christened through merging the names of two main research fields, i.e. “optoelectronics” and “spintronics”, taken over along with the building of the team. Activity on spintronics has started in 1999, with Access To Research Infrastructures at the European Facility at IESL Heraklion, Crete, Greece, when PLD of the first known spin polarized half Heusler alloy NiMnSb has been deposited on InSb at moderate temperature and issued a WO patent Application. Further on, the department evolved following the initiative of the institute in setting up a European network focused on the development of spin-polarized half-Heusler and Heusler alloys as contacts for narrow gap semiconductor structures. The network eventually turned in a FP5 R&D project with 16 partners (FENIKS, G5-RD-CT-2001 00535 EC), where INOE 2000 played a foremost role through leading one of the 7 work packages, i.e., “Magnetic Alloy Deposition”.

The group OPTOSPINTRONICS counts three physicists (condensed matter, biophysics, nuclear physics), one chemical engineering scientists (organic chemistry engineering), one physical-chemistry scientist, one specialist in electronic engineering, two PhD students (condensed matter, polymer physics) and four students (as tehnicians). The actual activity of the group advances around hot topics in materials science, physics, chemistry, and modelling focused on photonics, spintronics, sensors and their wide applications, and mathematical modelling.

Proiect component 1 - “Cercetări avansate privind crearea de noi cunoștințe, încurajarea științei deschise prin asigurarea vizibilității rezultatelor științifice și dezvoltării, accesului liber si conectivitatea infrastructurilor de cercetare

Obiectiv general proiect component 1:
Realizarea de cercetări de frontieră în domeniul optoelectronicii pentru rezolvarea unor provocări societale specifice la scară națională, regională sau mondială în domeniul optoelectronicii și în domenii conexe
Obiectiv specific proiect component 1:  
Activități de cercetare și inovare din aria provocărilor societale "Digitalizare, industrie si spatiu" în corelare cu specializarea inteligentă "5.1 Optoelectronică"

TEMA: Cercetări avansate pentru crearea de noi cunoștințe privind metodele si dispozitivele pentru conversia energiei solare în energie electrică cu aplicații fotovoltaice și optoelectronică (OPTOVOLT)

WORKPACKAGES
1. Studiul metodelor si dispozitivelor pentru conversia energiei solare cu aplicatii fotovoltaice (01.01.2023-30.06.2023)
2. Investigarea unor noi structuri tandem pentru tehnologii fotovoltaice de înaltă eficiență (01.01.2024-30.06.2024)
3. Studiul unor materiale din celula solară care încorporează contacte de pasivizare selective
4. Studiul de filme subtiri de oxizi metalici avand proprietati reglabile pentru straturi absorbante eficiente

 

Proiect component 2 - “Cercetări de frontieră privind realizarea de metode, tehnologii, produse și servicii inovatoare utilizate în soluționarea problematicii globale si creșterea competitivității bazate pe cunoaștere”

Obiectiv general proiect component 2:
Impulsionarea inovării în domeniile de specializare inteligentă proprii institutului, ca parte a ecosistemelor de inovare regionale, naționale și globale
Obiectiv specific proiect component 2:
Dezvoltarea de sisteme avansate integrate pentru susținerea ecosistemelor de inovare asociate specializării inteligente "6.1 Tehnologii pentru gestionarea, monitorizarea și depoluarea mediului"

TEMA: Arie de senzori optoelectronici pentru monitorizarea gazelor, umidității și temperaturii (OPTOCOLORSENSE)

WORKPACKAGES

1. Dezvoltarea de materiale colorimetrice pentru detecția gazelor periculoase din sere (01.01.2023-30.06.2023);
2. Dezvoltarea de materiale termocromice pentru integrarea în senzori multifuncționali (01.07.2023-31.12.2023);
3. Dezvoltarea componentelor ariei de senzori colorimetrici și termocromici (01.01.2024-31.03.2024);
4. Dezvoltarea de materiale colorimetrice pentru evaluarea umidității pentru integrarea în senzori multifuncționali (01.07.2024-31.12.2024);
5. Arie de senzori pentru evaluarea amestecurilor de gaze, temperaturii și umidității din interiorul serelor și solariilor;
6. Tehnologie de fabricare arie de senzori multifuncționali pe suport flexibil (01.07.2023-31.12.2023);
7. Demonstrarea funcționalității ariei de senzori optoelectronici pentru monitorizarea gazelor, umidității și temperaturii;
8. Implementarea ariei de senzori într-un minisolar și monitorizarea răspunsului la variația umidității, temperaturii și amestecurilor de gaze.

TEMA: Structuri specifice de biosenzori spectrali bazați pe interacția spin-foton-plasmon (SFPBIOSENS)

WORKPACKAGES

1. Dezvoltarea de structuri cu interfețe spin-foton pe bază de Fe3O4, HEA, Au și grafenă (01.07.2023-31.12.2023);
2. Studiul influenței câmpurilor generate prin pompaj optic asupra semnalului Raman pentru analiza probelor biologice (01.07.2024-31.12.2024);
3. Dezvoltarea substraturilor multicomponent pe bază de Fe3O4, HEA, Au și grafenă cu rezonanță plasmonică și studiul comparativ al proprietăților optoelectronice;
4. Diagnoză medicală prin evaluarea compușilor biologici complecși cu ajutorul substratelor optoelectronice din măsurători SERS ex vivo direct pe lichide biologice.

🌐 Cross-Disciplinary Integration

The research domain synergizes expertise across:

·         Condensed matter physics (electronic structure, spin interactions)

·         Materials chemistry (dopant incorporation, defect control)

·         Photonics and optoelectronics (light-matter interaction, photonic design)

·         Biomedical engineering (plasmonic biosensors, spectroscopic diagnostics)

·         Nanotechnology (bottom-up synthesis, nanocomposite integration)

🔬 Research Overview

The Department's research activities are intricately woven around the design, synthesis, and functional characterization of knowledge-based materials and optoelectronic structures, guided by application-driven objectives. The program operates at the intersection of materials science, solid-state physics, photonics, and spintronics, with an emphasis on multi- and cross-disciplinary integration. A critical thrust is directed toward the convergence of optical and spin degrees of freedom in solid-state platforms—culminating in the advancement of optospintronics.

The core research is segmented into two major axes: Materials Development and Process and Characterization Techniques, each supported by synergistic interaction among chemical synthesis, thin-film growth, photonic structuring, and nanoscale engineering.

🧪 Advanced Functional Materials

1. Heusler and Half-Heusler Compounds

These intermetallic compounds, particularly of the general form X₂YZ (full Heusler) and XYZ (half-Heusler), exhibit tunable electronic band structures, high spin polarization, and topological properties. The research focuses on:

·         Ferromagnetic and half-metallic behavior for spin-injection applications

·         Tailoring the Fermi surface via elemental substitution, such as Co₂Mn(Si, Ge, Sn), NiMnSb

·         Exploring pseudo-ternary compositions (e.g., Co₂MnX₁₋ₓYₓ) for multifunctional integration in spintronic devices

2. Diluted Magnetic Semiconductors (DMS)

The incorporation of magnetic dopants into semiconducting matrices enables carrier-mediated ferromagnetism. Particular interest lies in Co-based DMS systems, for their enhanced Curie temperatures and compatibility with III–V/II–VI semiconductors.

3. Phosphate Glasses Doped with Functional Ions

Phosphate-based vitreous matrices are synthesized with strategically embedded dopants such as:

·         II–VI semiconductor nanocrystals (e.g., ZnS, CdSe) for quantum confinement effects

·         3d transition metals (e.g., Cr³⁺, Mn²⁺) introducing luminescent and magnetic properties

·         Rare-earth ions (e.g., Nd³⁺, Er³⁺, Eu³⁺) for applications in solid-state lasers, amplifiers, and optical sensors
 These are fabricated both in bulk and thin-film formats, enabling application versatility from passive waveguides to active photonic layers.

4. Nanoengineered Metal–Organic Complexes

Rare-earth metal-organic complexes, synthesized at nano- and micro-scales, are embedded in polymer matrices to yield hybrid photonic-functional composites. These systems are tailored for:

·         Energy transfer studies

·         Flexible optoelectronic devices

·         Electroluminescent displays

5. Amorphous and Crystalline GaN Thin Films

GaN-based photonic materials are studied in both amorphous and epitaxial crystalline forms, serving as:

·         Active layers in UV optoelectronics

·         Templates for multi-quantum well heterostructures

·         Platforms for polariton-based photonic devices

6. Multilayer Photonic Heterostructures

The group engineers quasi-periodic dielectric stacks, particularly of the type:

·         (SiOₓ + P₂O₅)/ITO/(SiOₓ + P₂O₅)/ITO
 These are optimized for photonic bandgap engineering, plasmon-enhanced transmission, and angular-resolved spectral control.

7. Ceramic/Polymer Nanocomposites

Hybrid ceramic–polymer systems are developed for next-generation data storage and logic architectures, leveraging:

·         Dielectric tunability

·         Electro-optic response modulation

·         Mechanical flexibility in integrated photonic circuits

8. Plasmonic Nanoarchitectures for Biomedical Applications

Using noble metal nanostructures (e.g., Au, Ag), the research constructs plasmonic platforms exhibiting localized surface plasmon resonances (LSPR). These structures facilitate:

·         Label-free biosensing

·         Surface-enhanced Raman spectroscopy (SERS)

·         Photothermal cancer therapies

9. Carbon based functionalized materials

Development of new functionalized carbon-based materials starting from graphene, carbon nanotubes, fullerenes which can be used in:

·         Sensor’s development;

·         Transparent electrodes for solar cells;

·         Energy storage and gas detection;

·         Composites and coatings;

⚙️ Processing Techniques

A. Bulk Synthesis Methods

• Traveling Solvent Method (TSM)

A solution-mediated crystal growth technique, enabling stoichiometrically controlled growth of bulk Heusler and half-Heusler crystals, particularly where high purity and phase selectivity are critical.

• Traveling Heater Method (THM)

Utilizes a moving heat source to create a localized molten zone in the precursor material, facilitating directional solidification and large-grain growth for magnetic and thermoelectric materials.

• Vertical Gradient Freeze (VGF)

A controlled thermal gradient method for growing large-volume single crystals with minimized dislocation densities. Ideal for complex multi-component systems like Co₂-based Heuslers.

• Wet Synthesis of Phosphate Glasses

Precursor solutions undergo controlled hydrolysis and polycondensation, followed by melt quenching. This low-cost method allows fine control over doping homogeneity and optical transparency.

B. Thin Film Deposition Techniques

• Sol-Gel Processing

A bottom-up chemical route involving hydrolysis of metal alkoxides or chlorides to form oxide networks. Suitable for creating amorphous and crystalline thin films on various substrates.

• Pulsed Laser Deposition (PLD)

Employs high-energy laser ablation of a solid target to deposit films with stoichiometric fidelity, particularly effective for multi-component oxide systems and nitride thin films (e.g., GaN).

• Spin Coating

A high-speed rotational method to deposit uniform thin films from liquid precursors. Widely used for depositing sol-gel-derived layers and polymeric functional coatings.

C. Electrochemical synthesis

· Organic Synthesis: Generating reactive intermediates that are difficult to isolate or using them for complex molecule synthesis.

· Nanoparticle Synthesis: Producing nanoparticles like silver nanoparticles by reducing metal ions in a solvent.

· Metal Deposition: Depositing metals on surfaces for various applications.

🧪 Characterization Techniques

Magnetic and Spin Properties

·         Magneto-Optical Kerr Effect (MOKE): Probes surface magnetization through polarization rotation of reflected light, offering insight into spin alignment and domain structure in thin films.

Thermal and Transport Measurements

·         Charge and Heat Transport Analysis: Employs Seebeck coefficient, Hall effect, and four-point probe techniques to extract carrier concentration, mobility, and thermal conductivity parameters essential for spintronic and thermoelectric applications.

Spectroscopic and Structural Characterization

·         Fourier Transform Infrared Spectroscopy (FTIR): Determines chemical bonding, glass network structure, and vibrational modes in doped glasses.

·         UV-VIS-NIR Spectroscopy: Assesses optical bandgaps, absorption coefficients, and transmission properties across electronic transitions.

·         Fluorescence Spectroscopy: Maps radiative transitions, excited-state lifetimes, and quantum yields in rare-earth- and transition-metal-doped systems.

·         Raman Spectroscopy: Probes phonon modes, structural disorder, and strain effects in crystalline and amorphous materials. A specialized research focus is the development of Raman-based techniques for non-invasive medical diagnostics and in-vivo treatment monitoring.

·         RHEED (Reflection High-Energy Electron Diffraction): In-situ monitoring of epitaxial thin-film growth, allowing real-time feedback on surface crystallinity and lattice reconstruction.

Electrical Characterization

·         I–V and C–V Profiling: Assess diode behavior, interface states, and carrier injection efficiency

·         Impedance Spectroscopy: Probes dielectric relaxation and charge transport dynamics

·         Capacitance–Voltage (C–V) and Deep-Level Transient Spectroscopy (DLTS): Interface quality and trap state analysis

·         Four-Point Probe Method: Sheet resistance and conductivity measurements of thin films

·         Hall Effect Measurements: Carrier type, concentration, and mobility for semiconductors and spintronic materials

Electrochemical characterization

·         Cyclic Voltammetry (CV): study redox reactions and determine the electrochemical behavior of materials.

·         Electrochemical Impedance Spectroscopy (EIS): Provides information about the impedance of the electrochemical system, which can be used to determine properties like diffusion coefficients and reaction rates.

·         Potentiometry: Measures the potential difference between electrodes to determine analyte concentration or activity.

·         Amperometry: Measures the current flow at a fixed potential, often used to study reaction kinetics.

·         Chronopotentiometry: Measures the potential change at a constant current.

·         Chronoamperometry and Chronocoulometry: Measure current or charge as a function of time after a potential step.

PNCDI - IV Program

2023-2026 - Programul-nucleu din cadrul Planului Național de Cercetare Dezvoltare și Inovare 2022-2027, derulat cu sprijinul MCID, proiect nr. PN 23 05 - “Consolidarea excelenței ştiințifice în optoelectronică şi domenii conexe prin sinergia politicilor de cercetare şi inovare naționale, regionale şi ale Uniunii Europene, conform viziunii SNCISI 2022-2027“-OPTRONICA VII (Cod PN 23 05 nr. 11N/03.01.2023)

PNCDI - III Program 

2020

  • Ultrasensitive gas sensor array for greenhouse environment assessment - GreHSEN, 393PED/2020 (proiect PED);
  • E-tongue like sensor for food safety - FoodESense, 87/2020 (proiect PD);

2018

  • New Directions of Technological Development and Use of Advanced Nano-Composite Materials - AdvanceNano, 47PCCDI/15.03.2018;
  • Oxide Nano-Composites with Nano-Carbon Materials for Applications in Photonics - NANOCOMPOZITCARB, 42PCCDI/01.04.2018;

PNCDI - II Program

2014

  • Nanostructure-based system for real time detection of malignant tumor margins - NANOMARDET, 20/2014;
  • Sensors for metals based on azulenes modified electrodes for water quality monitoring - SEMEMA, 236/2014;

2012

  • New vitreous magneto-optical materials applied in optoelectronics – MOVITOPT, 186/2012;
  • Nanostructrures based on new organometallic compounds for electronic applications - NANOCEA, 17/2012;

2011

  • Quantum confinement effect of CdS / CdSe quantum dots in phosphor aluminosilicate matrix as a promising new temperature sensing material - TEMPGLASS, 51/2011;
  • Chemical and optical characterization of atmospheric suspended particles - CHEMOP, 12/2011;

 

2008

  • Advanced Organometallic Materials for Optoelectronics MOMAOPT, 72-177/2008;
  • Nonlinear functionalities in new nanostructured photonic materials for information technology - FUNFOTON, 12-111/2008;
  • Research on obtaining of phosphato-potassium vitreous fertilizers with controlled solubility and estabilishing the parameters for their use in plants production - AGROFERTIGLASS, 52-139/2008;

2007

  • Synthesis of vitreous materials based on SiO2 with high degree of doping control with applications  in photonics - VITROFOTONANOSIN, 11-053/2007;
  • Development of clean technologies for glass industry in the context of the sustainable development - CLEANTECHGLASS, 21-020/2007;
  • Advance phosphate materials with vitreous structure, doped with rare-earth ions, for optoelectronic applications – OPTOGLASS, 71-054/2007;
  • Monitoring of metallic structures behaviour at mechanical actions SISMET, 31-054/2007;

CEEX National Research Programme

  • Advanced structured materials for microelectronic microsystems CEEX 05-D11-38/ 06.10.2005- ASMOM 2005-2008;
  • Tailored Heusler alloys for spintronics CEEX 69/2005 - ASPIDHA 2005-2008;
  • Experimental method for study of magnetic materials through magneto-optic Kerr effect CEEX-33/2005 MAGNEKER 2005-2008;
  • Ecological glass through nanotechnologies for diminishing, adapting and restoring the natural environment elements Nr. 635 / 03.10.2005 - FRIENDLY GLASS http://www.inoe.ro/Proiect-Friendly-Glass;
  • Non-destructive method to evaluate the characteristics of road layers CEEX X1C15/2005 MNSR, 2005-2008 http://cfdp.utcb.ro/granturi/romanescu/grant.pdf;
  • Calcium Carbonate synthesis with preordained properties by non-conventional procedures CEEX 18/2005 SONOCARB, 2005-2008;
  • Interdisciplinary network targeting the research and the synthesis of semiconductor and conductor nanostructures aiming at obtaining photonic and optoelectronic devices used in biology and medicine  51 / 05.10.2005 – NANOCRYSTALNET;
  • Interactions, mechanisms and new phenomena in 2D, 3D nitrides systems based on 3d and 4f transitional elements CEEX D11-40/2006 TRANZEL 2005-2008 http://www.inoe.ro/TRANZEL;
  • Obtinerea de nanopigmenti pentru acoperiri decorative vitroase digitalizate 201-5/20.07.2006 – DIGIDECOR;
  • Behaviour of emergent states in strongly correlated electron systems CEEX-/2006-COSTEMSEC.